
Parallel Data Processing with
MapReduce

Mikael Högqvist
Zuse Institute Berlin
hoegqvist@zib.de



Introduction

I Data-set sizes increases towards infinity
I Google unique URLs: 1B (2000/06) - 1T

(2008/07), x1000 in 8 years!
I LOFAR, LHC, Pan-STARRS
I Location: people, vehicles, “things”

I How to process massive data-sets?



Processing System Issues

I Large data-sets are stored and processed on
large distributed/parallel systems

I How to deal with
I failures?
I data consistency, placement, etc.?
I how to schedule processing jobs?

I General goal: maximize parallel I/O available in
the system



The MapReduce Framework

I Provide a user-friendly programming framework
that simplifies parallel data processing

I Data modification, aggregation, filtering,
generation

I Implemented as a library
I Handle failures in software
I Takes care of load-balancing, data movement and

batch scheduling
I Let the user deal with data formats



Programming with MapReduce

I Input: list of key, value-pairs
I map(k , v)− (k ′, v ′)

I execute a function for each (key, value)-pair in the
input and output a new (key, value)-pair

I reduce(k ′, list(v ′))− result
I aggregate, filter, transform values in list(v’) for

each key

I Output: list of results



Word Counting

Input: set of documents

Output: list of (word, occurrences)-pairs

def map(docid, content):

for word in content:

emit(word, 1)

def reduce(word, occurrence list):

emit(word, sum(occurrence list))



Execution Workflow



Parallel Execution

I Goal: Maximize available I/O!

I Partition data into equal sized blocks

I Map is independent, reading input data

I Wait for map phase, do sort and group by key
on a partitioned set of keys

I Reduce is independent, writing out result data

I Move jobs to data, not data to jobs



System Architecture



Execution of a MapReduce Job



Real-world Usage Examples

I Search engine problems (e.g. Google, Yahoo)
I Web access logs, inverted index creation

I Sorting 1PB in 6 hours and 2 minutes over
4000 machines

I NYT 11M old articles into PDF using Hadoop,
Amazon EC2 and S3, cost?

≤ 1000$



Real-world Usage Examples

I Search engine problems (e.g. Google, Yahoo)
I Web access logs, inverted index creation

I Sorting 1PB in 6 hours and 2 minutes over
4000 machines

I NYT 11M old articles into PDF using Hadoop,
Amazon EC2 and S3, cost? ≤ 1000$



Summary for ...

I ... Developers
I “Automatic” parallel job
I Simple transition from local to

cluster/batch-system execution
I Don’t worry about failure, load-balancing,

scheduling

I ... System designers
I Shared-nothing system with commodity hardware

for nodes
I Use a distributed/parallel file-system
I Handle failures in software



Projects @ ZIB

I Data Management
I XtreemFS - Distributed File System
I Scalaris - Scalable key/value-store
I Stellaris - Grid Metadata System (AstroGrid-D)

I Data-intensive processing

I We are looking for large scale data
intensive use cases!



Links

I Hadoop, http://hadoop.apache.org/

I Cascading, http://cascading.org/

I MapReduce paper,
http://labs.google.com/papers/mapreduce.html

I XtreemFS, http://xtreemfs.org/

I Scalaris, http://scalaris.googlecode.com/

I Stellaris, http://stellaris.zib.de/


	Introduction

